Ligand-dependent luminescence of ultra-small Eu3+-doped NaYF4 nanoparticles

نویسندگان

  • Dominika Wawrzynczyk
  • Artur Bednarkiewicz
  • Marcin Nyk
  • Wieslaw Strek
  • Marek Samoc
چکیده

Pure cubic phase ultra-small α-NaYF4:4 % Eu3+ colloidal nanoparticles were synthesized by thermal decomposition reaction using three various capping ligands, i.e., oleic acid, trioctylphosphine oxide, and hexadecylamine. To expose as many Eu3+ ions as possible to interactions with the surface-bounded ligands, the nanoparticles were fabricated to have the diameters below 10 nm. The geometrical structure and properties of surface ligands needed for qualitative estimation of their influence on spectroscopic features of the investigated Eu3+ doped nanoparticles were obtained from DFT quantum-chemical calculations. Significant changes of luminescence spectra shapes and luminescence lifetime values were observed upon changes in the local chemical environment. We show that the ratio R = 5D0 → 7F1/5D0 → 7F2 of the intensities of the forced electric dipole (J = 2) and magnetic dipole (J = 1) transitions in the synthesized Eu3+ doped nanoparticles is highly sensitive to the type of ligand present on the nanoparticle surface. Similarly, 5D0 luminescence lifetimes are found to be sensitive to the refractive index, and also to the dielectric constant of ligands used during the synthesis to coat nanoparticles surface. We argue that the photophysical and electro-optical properties of colloidal Eu3+ doped inorganic nanoparticles show hyper-sensitive response to the chemical surroundings in the close vicinity of the nanoparticle itself. The behavior of both steady-state luminescence and its kinetics demonstrates the potential suitability of the studied nanoparticles for constructing self-referencing optical nano-sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Base Pair Resolution Measurements Using Resonance Energy Transfer Efficiency in Lanthanide Doped Nanoparticles

Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultra...

متن کامل

Effects of surface functionalization of hydrophilic NaYF4 nanocrystals doped with Eu3+ on glutamate and GABA transport in brain synaptosomes

Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydroph...

متن کامل

Morphology- and size-dependent spectroscopic properties of Eu3+-doped Gd2O3 colloidal nanocrystals

The synthesis, morphological characterization, and optical properties of colloidal, Eu(III) doped Gd2O3 nanoparticles with different sizes and shapes are presented. Utilizing wet chemical techniques and various synthesis routes, we were able to obtain spherical, nanodisk, nanotripod, and nanotriangle-like morphology of Gd2O3:Eu3+ nanoparticles. Various concentrations of Eu3+ ions in the crystal...

متن کامل

Effect of LiCl on the Microstructure and Luminescence Properties of YVO4:Eu3+ and YBO3:Eu3+ Phosphors

In this investigation, Eu3+ doped YVO4 /YBO3 phosphors were synthesized individually by conventional solid state method at 1100 °C under atmosphere condition. Meanwhile, different amounts of LiClwere used as the flux compound to modify the morphology of the phosphor particles and also final luminescence properties. It was concluded that even small amounts of fluxes play a vital role in the grow...

متن کامل

Synthesis and Luminescence Properties of Water Soluble α-NaGdF4/β-NaYF4:Yb,Er Core–Shell Nanoparticles

Hexagonal phase (β) sodium rare earth tetrafluorides (NaREF4, RE = Y, Gd, Lu, et al.) are considered the ideal matrices for lanthanide (Ln) ions doped upconversion (UC) luminescence materials, because they can provide favorable crystal lattice structures for the doped luminescent Ln ions to make intensive emissions. However, the cubic phase (α) NaREF4 always preferentially forms at low reaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013